Название: Planning Algorithms
Автор: Steven M. LaValle
Издательство: Published by Cambridge University Press
Жанр: Программирование
Год издания: 2006
Страниц: 1023
Язык: Английский
Формат: PDF
Качество: хорошее
Размер: 13 Мб
Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. Written for computer scientists and engineers with interests in artificial intelligence, robotics, or control theory, this is the only book on this topic that tightly integrates a vast body of literature from several fields into a coherent source for teaching and reference in a wide variety of applications. Difficult mathematical material is explained through hundreds of examples and illustrations.
Оглавление
Preface ix I Introductory Material 1 1 Introduction 3 1.1 Planning to Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Motivational Examples and Applications . . . . . . . . . . . . . . . 5 1.3 Basic Ingredients of Planning . . . . . . . . . . . . . . . . . . . . . 17 1.4 Algorithms, Planners, and Plans . . . . . . . . . . . . . . . . . . . . 19 1.5 Organization of the Book . . . . . . . . . . . . . . . . . . . . . . . . 24 2 Discrete Planning 27 2.1 Introduction to Discrete Feasible Planning . . . . . . . . . . . . . . 28 2.2 Searching for Feasible Plans . . . . . . . . . . . . . . . . . . . . . . 32 2.3 Discrete Optimal Planning . . . . . . . . . . . . . . . . . . . . . . . 43 2.4 Using Logic to Formulate Discrete Planning . . . . . . . . . . . . . 57 2.5 Logic-Based Planning Methods . . . . . . . . . . . . . . . . . . . . 63 II Motion Planning 77 3 Geometric Representations and Transformations 81 3.1 Geometric Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.2 Rigid-Body Transformations . . . . . . . . . . . . . . . . . . . . . . 92 3.3 Transforming Kinematic Chains of Bodies . . . . . . . . . . . . . . 100 3.4 Transforming Kinematic Trees . . . . . . . . . . . . . . . . . . . . . 112 3.5 Nonrigid Transformations . . . . . . . . . . . . . . . . . . . . . . . 120 4 The Configuration Space 127 4.1 Basic Topological Concepts . . . . . . . . . . . . . . . . . . . . . . 127 4.2 Defining the Configuration Space . . . . . . . . . . . . . . . . . . . 145 4.3 Configuration Space Obstacles . . . . . . . . . . . . . . . . . . . . . 155 4.4 Closed Kinematic Chains . . . . . . . . . . . . . . . . . . . . . . . . 167 5 Sampling-Based Motion Planning 185 5.1 Distance and Volume in C-Space . . . . . . . . . . . . . . . . . . . 186 5.2 Sampling Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 5.3 Collision Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 5.4 Incremental Sampling and Searching . . . . . . . . . . . . . . . . . 217 5.5 Rapidly Exploring Dense Trees . . . . . . . . . . . . . . . . . . . . 228 5.6 Roadmap Methods for Multiple Queries . . . . . . . . . . . . . . . . 237 6 Combinatorial Motion Planning 249 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 6.2 Polygonal Obstacle Regions . . . . . . . . . . . . . . . . . . . . . . 251 6.3 Cell Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . 264 6.4 Computational Algebraic Geometry . . . . . . . . . . . . . . . . . . 280 6.5 Complexity of Motion Planning . . . . . . . . . . . . . . . . . . . . 298 7 Extensions of Basic Motion Planning 311 7.1 Time-Varying Problems . . . . . . . . . . . . . . . . . . . . . . . . 311 7.2 Multiple Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 7.3 Mixing Discrete and Continuous Spaces . . . . . . . . . . . . . . . . 327 7.4 Planning for Closed Kinematic Chains . . . . . . . . . . . . . . . . 337 7.5 Folding Problems in Robotics and Biology . . . . . . . . . . . . . . 347 7.6 Coverage Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 7.7 Optimal Motion Planning . . . . . . . . . . . . . . . . . . . . . . . 357 8 Feedback Motion Planning 369 8.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 8.2 Discrete State Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 371 8.3 Vector Fields and Integral Curves . . . . . . . . . . . . . . . . . . . 381 8.4 Complete Methods for Continuous Spaces . . . . . . . . . . . . . . 398 8.5 Sampling-Based Methods for Continuous Spaces . . . . . . . . . . . 412 III Decision-Theoretic Planning 433 9 Basic Decision Theory 437 9.1 Preliminary Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 438 9.2 A Game Against Nature . . . . . . . . . . . . . . . . . . . . . . . . 446 9.3 Two-Player Zero-Sum Games . . . . . . . . . . . . . . . . . . . . . 459 9.4 Nonzero-Sum Games . . . . . . . . . . . . . . . . . . . . . . . . . . 468 9.5 Decision Theory Under Scrutiny . . . . . . . . . . . . . . . . . . . . 477 10 Sequential Decision Theory 495 10.1 Introducing Sequential Games Against Nature . . . . . . . . . . . . 496 10.2 Algorithms for Computing Feedback Plans . . . . . . . . . . . . . . 508 10.3 Infinite-Horizon Problems . . . . . . . . . . . . . . . . . . . . . . . 522 10.4 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . 527 10.5 Sequential Game Theory . . . . . . . . . . . . . . . . . . . . . . . . 536 10.6 Continuous State Spaces . . . . . . . . . . . . . . . . . . . . . . . . 551 11 Sensors and Information Spaces 559 11.1 Discrete State Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 561 11.2 Derived Information Spaces . . . . . . . . . . . . . . . . . . . . . . 571 11.3 Examples for Discrete State Spaces . . . . . . . . . . . . . . . . . . 581 11.4 Continuous State Spaces . . . . . . . . . . . . . . . . . . . . . . . . 589 11.5 Examples for Continuous State Spaces . . . . . . . . . . . . . . . . 598 11.6 Computing Probabilistic Information States . . . . . . . . . . . . . 614 11.7 Information Spaces in Game Theory . . . . . . . . . . . . . . . . . 619 12 Planning Under Sensing Uncertainty 633 12.1 General Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634 12.2 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640 12.3 Environment Uncertainty and Mapping . . . . . . . . . . . . . . . . 655 12.4 Visibility-Based Pursuit-Evasion . . . . . . . . . . . . . . . . . . . . 684 12.5 Manipulation Planning with Sensing Uncertainty . . . . . . . . . . 691 IV Planning Under Differential Constraints 711 13 Differential Models 715 13.1 Velocity Constraints on the Configuration Space . . . . . . . . . . . 716 13.2 Phase Space Representation of Dynamical Systems . . . . . . . . . 735 13.3 Basic Newton-Euler Mechanics . . . . . . . . . . . . . . . . . . . . . 745 13.4 Advanced Mechanics Concepts . . . . . . . . . . . . . . . . . . . . . 762 13.5 Multiple Decision Makers . . . . . . . . . . . . . . . . . . . . . . . . 780 14 Sampling-Based Planning Under Differential Constraints 787 14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 788 14.2 Reachability and Completeness . . . . . . . . . . . . . . . . . . . . 798 14.3 Sampling-Based Motion Planning Revisited . . . . . . . . . . . . . 810 14.4 Incremental Sampling and Searching Methods . . . . . . . . . . . . 820 14.5 Feedback Planning Under Differential Constraints . . . . . . . . . . 837 14.6 Decoupled Planning Approaches . . . . . . . . . . . . . . . . . . . . 841 14.7 Gradient-Based Trajectory Optimization . . . . . . . . . . . . . . . 855 15 System Theory and Analytical Techniques 861 15.1 Basic System Properties . . . . . . . . . . . . . . . . . . . . . . . . 862 15.2 Continuous-Time Dynamic Programming . . . . . . . . . . . . . . . 870 15.3 Optimal Paths for Some Wheeled Vehicles . . . . . . . . . . . . . . 880 15.4 Nonholonomic System Theory . . . . . . . . . . . . . . . . . . . . . 888 15.5 Steering Methods for Nonholonomic Systems . . . . . . . . . . . . . 910
Скачать с облака
ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!
[related-news]
[/related-news]